
Numerical methods with Sage

Lauri Ruotsalainen, Matti Vuorinen

Department of Mathematics and Statistics, University of Turku

E-mail: lauri.ruotsalainen@gmail.com, vuorinen@utu.fi

Abstract

Numpy and SciPy are program libraries for the Python scripting language, which apply to
a large spectrum of numerical and scientific computing tasks. The Sage project provides a
multiplatform software environment which enables one to use, in a unified way, a large number
of software components, including NumPy and SciPy, and which has Python as its command
language. We review several examples, typical for scientific computation courses, and their
solution using these tools in the Sage environment.

2000 Mathematics Subject Classification. 65-01. .
Keywords. Numerical analysis teaching.

1 Introduction

Python is a popular multipurpose programming language [Lut]. It is often used to combine sev-
eral software components. When augmented with special libraries/modules, it is suitable also for
scientific computing and visualization [Kiu, Lan]. These modules make scientific computing with
Python similar to what commercial packages such as MATLAB, Mathematica and Maple offer.
Special Python libraries like NumPy, SciPy and CVXOPT allow fast machine precision floating
point computations and provide subroutines to all basic numerical analysis functions. For data
visualization there are numerous Python based libraries such as Matplotlib, PyX and the Python
Imaging Library (PIL). There is a very wide collection of external libraries. These packages/libraries
are available either for free or under permissive open source licenses, for example the GNU General
Public License, which make these very attractive for university level teaching purposes.

The mission of the Sage project is to bring a large number of such software libraries under
the same umbrella. Sage offers a common interface for all of its components and its command
language is a dialect of Python. Originally developed for the purposes of number theory and
algebraic geometry, Sage currently contains more than 100 modules based on freely available open
source libraries. Augmented with these, Sage is able to carry out both symbolic and numeric
computing [S]. The Maxima software package, which is one of the modules supported by Sage,
is a very powerful program for symbolic computation and as such applies to the study of many
mathematical topics (Taylor series expansion, differentiation, integration, matrices, polynomials,
groups,...) [M].

1.1 History of Sage

Sage was initially created by William Stein in 2004-2005, using open source programs released
under the GPL or a GPL-compatible license. The main goal of the project was to create a viable
open source alternative to proprietary mathematical software to be used for research and teaching.
The first release of the program was in February 2005. By the end of the year, Sage included Pari,

Tbilisi Mathematical Journal 5(2) (2012), pp. 101–119.
Tbilisi Centre for Mathematical Sciences & College Publications.

102 L. Ruotsalainen, M. Vuorinen

GAP and Singular libraries as standard and worked as a common interface to other mathematical
programs like Mathematica and Magma. [His, P, G, DGPS]

Since the beginning Sage has expanded rapidly. As of November 2012, at least 249 people have
actively contributed code for Sage. The range of functionality of Sage is vast, covering mathematical
topics of all kinds ranging from number theory and algebra to geometry and numerical computation.
Sage is most commonly used in university research and teaching. On Sage’s homepage there are
listed more than one hundred academic articles, books and theses in which the program has been
involved.

1.2 Sage as a computer algebra system

Many software systems (e.g. Maple, Mathematica and MATLAB) contain an implementation of a
new programming language specific to that system. In contrast, Sage uses Python, which is a pop-
ular and widespread high-level programming language. The Python language is considered simple
and easy to learn. On the other hand it makes use of more advanced programming techniques, such
as object-oriented programming and supports the definition of new methods and data types. All
this enables convenient implementation of mathematical concepts such as groups, polynomials and
matrices and provides support for mathematical experimentation. Python functions as a common
user interface to Sage’s nearly one hundred software packages.

Some of the advantages of Sage in scientific programming are the free availability of the source
code and openness of development. Most of the commercial software packages do not provide to
users access to the source code, which makes it impossible to revise and improve the code. Therefore
the use of the built-in functions of these programs may not be adequate in some mathematical
studies that are based on the results given by these algorithms. This is not the case in open source
software, where the user can verify the individual implementations of the algorithms.

1.3 Access to Sage

One of the strengths of Sage is that it can be used over the network without requiring any installation
of the application. The Sage Notebook is a web browser-based graphical user interface for Sage.
It allows writing and running code, displaying embedded two and three dimensional plots, and
organizing and sharing data with other users. The Sage Notebook works with most web browsers
without the need for additional add-ons or extensions. However, Java is needed. It is needed to
run Jmol, the Java applet used in Sage to plot 3D objects.

Sage can be also installed natively for Linux, OS X and Solaris. Both binaries and source code
are available for download on Sage’s homepage. In order to run Sage on the Windows operating
system the use of virtualization technology (e.g. VirtualBox or VMware) is required. There are
three basic interfaces to access Sage locally: the Sage Notebook on a web browser, a text-based
command-line interface using IPython, or as a library in a Python program. [PG]

In addition to these main options, Sage can be applied in alternative ways. For instance, a single
cell containing Sage code can be embedded in any webpage and evaluated using a public single cell
server. There is also support to embed Sage code and graphics in LaTeX documents using Sagetex.
[Dra]

1.4 Numerical computation in Sage

Numerical computation has been one of the most central applications of the computer since its
invention. In modern society, the significance of the speed and effectiveness of the computational

Numerical methods with Sage 103

algorithms has only increased with applications in data analysis, information retrieval, optimization
and simulation.

Sage contains several program libraries suitable for numerical computing. The most substantial
of these are NumPy, SciPy and CVXOPT, all of which are extension modules to the Python pro-
gramming language, designed for specific mathematical operations. In order to use these packages in
Sage, they must be first imported to the Sage session using the import statement. [ADV, Oli, JOP]

NumPy provides support for fast multi-dimensional arrays and numerous matrix operations.
The syntax of NumPy resembles the syntax of MATLAB in many ways. NumPy includes subpack-
ages for linear algebra, discrete Fourier transforms and random number generators, among others.
SciPy is a library of scientific tools for Python. It uses the array object of the NumPy library
as its basic data structure. SciPy contains various high level scientific modules for linear algebra,
numerical integration, optimization, image processing, ODE solvers and signal processing, et cetera.

CVXOPT is a library specialized in optimization. It extends the built-in Python objects with
dense and sparse matrix object types. CVXOPT contains methods for both linear and nonlinear
convex optimization. For statistical computing and graphics, Sage supports the R environment,
which can be used via the Sage Notebook. Some statistical features are also provided in SciPy, but
not as comprehensively as in R. [R]

Sage includes the Matplotlib library for plotting two-dimensional objects. For three-dimensional
plotting, Sage has Jmol, an open-source Java viewer. Additionally, the Tachyon 3D raytracer may
be used for more detailed plotting. Sage’s interact function can also bring added value to the study
of numerical methods by introducing controllers that allow dynamical adjusting of the parameters
in a Sage program. [Hun, J, Tos, Sto]

Sage’s capabilities can be extended using Python modules. In many situations, the Python
interpreter is fast enough for common calculations. However, sometimes considerable speed is
needed in numerical computations. Sage supports Cython, which is a compiled language based on
Python that supports calling C functions and declaring C types on variables and class attributes.
It is used for writing fast Python extension modules and interfacing Python with C libraries. The
NumPy and SciPy libraries included in Sage, written mostly in C, interface with Python/Sage code
using Cython. In addition, techniques like distributed computing and parallel processing using
multi-core processors or multiple processors are supported in Sage. [BBSE, Num]

For more information on numerical computing with Sage, see [Num].

1.5 Teaching with Sage

Sage’s ease of acquisition and use, as well as the simple to learn syntax, make it a strong contender
for teaching purposes on the university level. Knowledge of Python syntax may prove useful in other
contexts than just Sage. The graphical Sage Notebook interface, worksheet formatting tools, LaTeX
support, easy accessibility over networks without client installation, and the modular, extensible
nature of the system also support the use of the package for education. On the other hand offline
usage of the software requires a large download, and on Windows platforms, the use of virtualization
software.

Sage has gained popularity in education circles: Sage’s official wiki lists over 30 university
level courses where the system has been used. Course material and literature related to the use
of the system in education can also be found on the official site. [Pub, T] The Sage Education
Days video recordings and resources are recommended for readers interested in the use of Sage on
various mathematical topics. [Wor] For instance, in Sage Education Days 3, Jason Grout from

104 L. Ruotsalainen, M. Vuorinen

Drake University shares his experiences about Sage being a central part of his course on numerical
analysis. [Gro]

In this paper, we present examples or case studies of the usage of Sage to solve some problems
common for typical numerical analysis courses. The examples are drawn from the courses of the
second author at the University of Turku, covering the standard topics of numerical computing and
based, to a large extent, on the standard textbooks [BF, CdB, Hea, Hen, MF, Mol, Kiu, Lan, LP,
PFTV, Sch, Str, TLNC].

2 Case studies

In this section our goal is to present examples of the use of Sage for numerical computing. This goal
will be best achieved by giving code snippets or programs that carry out some typical numerical
computation task. We cover some of the main aspects of a standard first course in numerical
computing, such as the books [BF, CdB, Hea, MF, Mol, Kiu, Lan, TLNC]. The students of such
courses are assumed to be familiar with linear algebra [Str] and calculus of several variables.

2.1 Newton’s method

Computing the root of some given equation is one of the fundamental problems of numerical analysis.
If a real-valued function is differentiable and the derivative is known, then Newton’s method may
be used to find an approximation to its roots.

In Newton’s method, an initial guess x0 for a root of the differentiable function f : R → R
is made and the accuracy goal 2h is fixed with f(x0 − h)f(x0 + h) > 0, h > 0. The consecutive
iterative steps are defined by

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2, . . .

An implementation of the Newton method is presented in the following Sage code. The accuracy
goal for the root 2h is reached when f(xn−h)f(xn +h) < 0 . In order to avoid an infinite loop, the
maximum number of iterations is limited by the parameter maxn.

def newton_method(f, c, maxn, h):

f(x) = f

iterates = [c]

j = 1

while True:

c = c - f(c)/derivative(f(x))(x=c)

iterates.append(c)

if f(c-h)*f(c+h) < 0 or j == maxn:

break

j += 1

return c, iterates

As an example, we use the algorithm to find the root of the equation x2 − 3 = 0. The function
newton method is used to generate a list of the iteration points. Sage contains a preparser that
makes it possible to use certain mathematical constructs such as f(x) = f , used in the function
newton method, that would be syntactically invalid in standard Python. Figure 1 provides a sample
output of the program.

Numerical methods with Sage 105

f(x) = x^2-3

h = 10^-5

initial = 2.0

maxn = 10

z, iterates = newton_method(f, initial, maxn, h/2.0)

print "Root =", z

header = ["n", "x_n", "$f(x_n)$", "$f(x_n-h)f(x_n+h)$"]

html.table((

[i, c.n(digits=7), f(c).n(digits=5), (f(c-h)*f(c+h)).n(digits=4)]

for i, c in enumerate(iterates)), header=header)

Figure 1. Output of the Newton iteration.

2.2 Computational Methods of Linear Algebra

Sage offers a good platform for practicing both symbolic and numerical linear algebra. The software
packages specialized in computational linear algebra that are contained in Sage include LAPACK,
LinBox, IML, ATLAS, BLAS and GSL. In most of the examples of this chapter, we use native Sage
matrices that suit most needs.

Let A be a matrix over the real double field (RDF) as defined in the next code. The matrix
function accepts the base ring for the entries and the dimensions of the matrix as its parameters.
We can compute various values associated with the matrix, such as the determinant, the rank and
the Frobenius norm:

Sage: A = matrix(RDF, 3, [1,3,-3, -3,7,-3, -6,6,-2])

Sage: A.determinant()

-32.0

Sage: A.rank()

3

Sage: A.norm()

12.7279220614

The function A.inverse() returns the inverse of A, should it exist. Otherwise Sage informs that
the matrix must be nonsingular in order to compute the inverse.

Sage: A.inverse()

106 L. Ruotsalainen, M. Vuorinen

 −0.125 0.375 −0.375
−0.375 0.625 −0.375
−0.75 0.75 −0.5

Let b = (1, 3, 6). We solve the matrix equation Ax = b using the function solve right. The

notation A\b may also be used.

Sage: b = vector([1,3,6])

Sage: A.solve_right(b)

(-1.25, -0.75, -1.5)

The core of numerical linear algebra contains numerous matrix decompositions for matrix analy-
sis and computations [Str]. Sage provides several decomposition methods related to solving systems
of linear equations (e.g. LU, QR, Cholesky and singular value decomposition) and decompositions
based on eigenvalues and related concepts (e.g. Schur decomposition, Jordan form). The avail-
ability of these functions depends on the base ring of matrix; for numerical results the use of real
double field (RDF) or complex double field (CDF) is required.

Let us determine the LU decomposition of the matrix A. The result of the function A.LU()
is a triple of matrices P , L and U , so that PA = LU , where P is a permutation matrix, L is a
lower-triangular matrix and U is an upper-triangular matrix.

Sage: A.LU() 0.0 0.0 1.0
0.0 1.0 0.0
1.0 0.0 0.0

 ,

 1.0 0.0 0.0
0.5 1.0 0.0

−0.1666 1.0 1.0

 ,

 −6.0 6.0 −2.0
0.0 4.0 −2.0
0.0 0.0 −1.3333

According to linear algebra, the solution of the equation Ax = b for a n × n matrix is unique
if the determinant det(A) 6= 0 . However, the solution of the equation may be numerically unstable
also if det(A) 6= 0 . The standard way to characterize the ”numerical nature” of a square matrix
A is to use its condition number cond(A) defined as σM/σm where σM (σm) is the largest (least)
singular value of A . The singular value decomposition (SVD) of A yields the singular values as
follows:

A = USV T

where U and V are orthogonal n× n matrices and the S is a diagonal n× n matrix with positive
entries on the diagonal organized in decreasing order, the singular values of A . For more information
about the SVD and its applications, the reader is referred to [Mol] and [Str].

In the next example we study the influence of the condition number on the accuracy of the
numerical solution of a random matrix with a prescribed condition number. For this purpose we
use a simple method to generate random matrices with a prescribed condition number c ≥ 1: take a
random square matrix A, form its SVD A = USV T and modify its singular values S so that for the
modified matrix Sc the quotient of the largest and least singular value is c and then Ac = UScV

T

is our desired random matrix with cond(Ac) = c . For several values of c we then observe the error
in the numerical solution of Ac x = b and graph the error as a function of cond(Ac) in the loglog
scale. We see that the condition number appears to depend on cond(Ac) almost in a linear way.

Numerical methods with Sage 107

import numpy as np

from matplotlib.pyplot import *

data = []

n = 20

A = np.random.rand(n,n)

U, s, V = np.linalg.svd(A)

ss = np.zeros((n,n))

for p in np.arange(1,16,2.):

c = 10.^p

for j in range(n):

ss[j, j] = s[0] - j * (s[0] - s[0] / c) / (n - 1)

aa = np.dot(np.dot(U, ss), V.T)

b = np.dot(aa, np.ones(n))

numsol = np.linalg.solve(aa, b)

d = np.linalg.norm(numsol - np.ones(n))

data.append([c, d])

data = np.array(data)

x,y = data[:,0],data[:,1]

clf()

loglog(x, y, color=’k’, markersize=2)

loglog(x, y, ’o’, color=’k’, markersize=10)

xlabel(’Condition number of the matrix’,\

fontweight=’bold’, fontsize=14)

ylabel(’Error’, fontweight=’bold’, fontsize=14)

title(’Error as a function of the condition matrix’,\

fontweight=’bold’, fontsize=14)

grid(True)

savefig("fig.png")

2.3 Numerical integration

Numerical integration methods can prove useful if the integrand is known only at certain points
or the primitive is very difficult or even impossible to find. For the purpose of demonstration,
calculating numerical methods by hand may be useful, but computer programs are usually better
suited in finding patterns and comparing different methods. In the next example, three numerical
integration methods are implemented in Sage: the midpoint rule, the trapezoidal rule and Simpson’s
rule. The differences between the exact value of integration and the approximation are tabulated
by the number of subintervals n (Fig 3).

f(x) = x^2

a = 0.0

b = 2.0

108 L. Ruotsalainen, M. Vuorinen

101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015

Condition number of the matrix

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
rr

o
r

Error as a function of the condition matrix

Figure 2. The output of the program used to study the influence of the condition number on the
accuracy of the numerical solution of a random matrix with a prescribed condition number.

table = []

exact = integrate(f(x), x, a, b)

for n in [4, 10, 20, 50, 100]:

h = (b-a)/n

midpoint = sum([f(a+(i+1/2)*h)*h for i in range(n)])

trapezoid = h/2*(f(a) + 2*sum([f(a+i*h) for i in range(1,n)]) + f(b))

simpson = h/3 * (f(a) + \

sum([4*f(a+i*h) for i in range(1,n,2)]) + \

sum([2*f(a+i*h) for i in range (2,n,2)]) + \

f(b))

table.append([n, h.n(digits=2), (midpoint-exact).n(digits=6),

(trapezoid-exact).n(digits=6), (simpson-exact).n(digits=6)])

Numerical methods with Sage 109

header=["n", "h", "Midpoint rule", "Trapezoidal rule", "Simpson’s rule"]

html.table(table, header=header)

Figure 3. The table shows the difference between the exact value of the integral and the approx-
imation using various rules.

The numerical tools of Sage include also programs for numerical integration. For instance, it is
possible to automatically produce piecewise-defined line functions defined by the trapezoidal rule
or the midpoint rule. These functions can be used to visualize different geometric interpretations of
the numerical integration methods. In the next example, the midpoint rule is used to calculate an
approximation for the definite integral of the function f(x) = x2 − 5x+ 10 over the interval [0, 10]
using six subintervals (Fig 4).

f(x) = x^2-5*x+10

f = Piecewise([[(0,10), f]])

g = f.riemann_sum(6, mode="midpoint")

F = f.plot(color="blue")

R = add([line([[a,0],[a,f(x=a)],[b,f(x=b)],[b,0]], color="red")

for (a,b), f in g.list()])

show(F+R)

Sage’s numerical integration method numerical integral utilizes the adaptive Gauss-Kronrod
method available in the GSL (GNU Scientific Library) library. Further methods for numerical
integration are available in SciPy’s sub-packages.

2.4 Multidimensional Newton’s method

Newton’s iteration for solving a system of equations f(x) = 0 in Rn consists of fixing a suitable
initial value x0 and recursively defining

xk+1 = xk − Jf (xk)−1f(xk) , k = 0, 1, 2,

Consider next the case n = 3 and the function

f(x) =

 3x0 − cos (x1x2)− 1
2

x20 − 81(x1 + 0.1)2 + sinx2 + 10.6
e−x0x1 + 20x2 + 10π−3

3

 ,

110 L. Ruotsalainen, M. Vuorinen

2 4 6 8 10

10

20

30

40

50

60

Figure 4. The geometric interpretation of the midpoint rule is visualized using Sage’s built-in
functions for numerical analysis and plotting.

where x = (x0, x1, x2). In this program the Jacobian matrix Jf (x) is computed symbolically and
its inverse numerically. As a result, the program produces a table of the iteration steps and a 3D
plot that displays a polygonal line connecting the successive steps of the iteration. The graphic
rendered by the program can be interactively rotated by the user.

x0, x1, x2 = var(’x0 x1 x2’)

f1(x0, x1, x2) = 3*x0 - cos(x1*x2) - (1/2)

f2(x0, x1, x2) = x0^2 - 81*(x1 + 0.1)^2 + sin(x2) + 10.6

f3(x0, x1, x2) = e^(-x0*x1) + 20*x2 + (10*pi - 3)/3

f(x0, x1, x2) = (f1(x0,x1,x2), f2(x0,x1,x2), f3(x0,x1,x2))

j = jacobian(f, [x0,x1,x2])

x = vector([3.0, 4.0, 5.0]) # Initial values

data = [[0, x, n(norm(f(x[0], x[1], x[2])), digits=4)]]

for i in range(1,8):

x = vector((

n(d) for d in

x - j(x0=x[0], x1=x[1], x2=x[2]).inverse() * \

f(x[0], x[1], x[2])

))

Numerical methods with Sage 111

data.append([i, x, norm(f(x[0], x[1], x[2]))])

HTML Table

html.table([(data[i][0], data[i][1].n(digits=10),

n(data[i][2], digits=4)) for i in range(0,8)],

header = ["i", "(x_0,x_1,x_2)", "$norm(f)$"])

3D Picture

l = line3d([d[1] for d in data], thickness=5)

p = point3d(data[-1][1], size=15, color="red")

show(l + p)

Figure 5. The program produces a table showing the iteration steps of the Newton’s method.

2.5 Nonlinear fitting of multiparameter functions

Given the data (xj , yj), j = 1, . . . ,m, we wish to fit y = f(x, λ) into a ”model”, where λ =
(λ1, ..., λp), by minimizing the object function

s(λ) =

m∑
j=1

(yj − f(xj , λ))2.

The minimization may encounter the usual difficulties: the minimum need not be unique and
there may be several local minima, each of which could cause the algorithm to stop prematurely.
In the next example the function minimize uses the Nelder-Mead Method from the scipy.optimize
package.

Let λ = (λ1, λ2, λ3). Consider the model function

f(x, λ) = λ1e
−x + λ2e

−λ3x.

112 L. Ruotsalainen, M. Vuorinen

Figure 6. An interactive 3D plot shows a polygonal line connecting the successive iteration steps.
The plot is made with the Jmol application integrated in Sage.

The data points used in this example are generated randomly by deviating the values of the
model function.

from numpy import arange, linalg, random

def fmodel(lam, x):

""" The model function. """

return lam[0]*exp(-x) + lam[1]*exp(-lam[2]*x)

def fobj(lam, xdata, ydata):

""" The object function. """

return linalg.norm(fmodel(lam, xdata) - ydata)

xdata = arange(0, 1.15, 0.05)

lam = [0.2, 1.5, 0.7]

y = fmodel(lam, xdata)

The generation of the data points

ydata = y*(0.97+0.05*random.rand(y.size))

Numerical methods with Sage 113

Initial values

lam0 = [1, 1, 1]

y0 = fobj(lam0, xdata, ydata)

The minimization of the object function

lam = minimize(fobj, lam0, args=(xdata, ydata), algorithm=’simplex’)

yfinal = fobj(lam, xdata, ydata)

Plot of the datapoints and the model function

fit = plot(fmodel(lam, x), (x, 0, 1.5), legend_label="Fitted curve")

datapoints = list_plot(zip(xdata, ydata), size=20,

legend_label="Data points")

html("\n\n$\\text{Object function values: start = %s, final = %s}$\n"

%(n(y0, digits=5), n(yfinal, digits=5)))

show(fit + datapoints, figsize=5, gridlines=True,

axes_labels=("xdata", "ydata"))

Optimization terminated successfully.

Current function value: 0.080054

Iterations: 288

Function evaluations: 505

2.6 Polynomial Approximation

The problem of finding (n− 1)th order polynomial approximation for a function g on the interval
[r1, r2] leads to the minimization of the expression

f(c1, ..., cn) =

∫ r2

r1

(g(x)−
n∑
k=1

ckx
n−k)2 dx

with respect to the parameter vector (c1, ..., cn) . In order to find the optimal value of the parameter
vector, we consider the critical points where gradient vanishes i.e. the points where

∂f

∂ci
= 0 ,∀i = 1, ..., n .

For the purpose of illustration, consider the case when g(x) = ex and n = 2, 3, 4. The equations
∂f
∂ci

= 0, i = 1, . . . , n, lead to the requirement

n∑
k=1

ck

(
r2n−k−j+1

2n− k − j + 1

)∣∣∣∣r2
r1

=

∫ r2

r1

g(x)xn−j dx ,

which is an n× n linear system of equations for the coefficients ck . In the code below the integrals
on the right hand side are evaluated in terms of the function numerical integral.

114 L. Ruotsalainen, M. Vuorinen

0 0.2 0.4 0.6 0.8 1 1.2 1.4
xdata

0.6

0.8

1

1.2

1.4

1.6

ydata

Fitted curve
Data points

Figure 7. The algorithm used in the program returns a report on the success of the optimization.
The plot shows the data points and the model function in the same coordinate system.

from numpy import arange, polyval, zeros, linalg

f(x) = e^x

interval = [-1, 1]

nmax = 3

data = zeros((nmax, nmax))

r1, r2 = interval[0], interval[1]

for n in range(2, nmax+1):

a, b, c = zeros((n, n)), zeros(n), zeros(n)

for j in range(1, n+1):

for k in range(1, n+1):

a[j-1, k-1] = (r2^(2*n-k-j+1) - r1^(2*n-k-j+1))/(2*n-k-j+1)

b[j-1] = numerical_integral(f*x^(n-j), r1, r2)[0]

c = linalg.solve(a,b)

h = (r2-r1)/40

xs = arange(r1, r2+h, h)

y1 = [f(xi) for xi in xs]

Numerical methods with Sage 115

y2 = polyval(c, xs)

err = abs(y2-y1)

maxer = max(err)

Use trapezoidal rule to compute error

int1 = h*(sum(err) - 0.5*(err[0] + err[-1]))

int2 = h*(sum(err^2) - 0.5*(err[0]^2 + err[-1]^2))

Plots

eplot = plot(f(x), (x, r1, r2), color="black")

polyplot = plot(polyval(c, x), (x, r1, r2), color="red", figsize=3)

epoly = eplot + polyplot

errplot = plot(abs(f(x)-polyval(c, x)), (x, r1, r2), figsize=3)

Output text and graphics

html("<hr>$n=%s:$"%n)

html.table([

["$%s$"%latex(matrix(a).n(digits=4)),

"$%s$"%latex(vector(b).column().n(digits=4)),

"$%s$"%latex(vector(c).column().n(digits=4))

]], header=["a", "b", "c"])

html("$\\text{Abs. error = } %s\qquad\qquad\\text{L2 error = }

%s$"%(maxer.n(digits=6), int2.n(digits=6)))

html.table([["$\\text{Approximation (n = %s)}$"%n,

"$\\text{Abs. error function (n = %s)}$"%n],

[epoly, errplot]], header=True)

116 L. Ruotsalainen, M. Vuorinen

Figure 8. The picture shows the (n− 1)th order polynomial approximation for the function ex on
the interval [−1, 1] in the cases of n = 2 and n = 3.

Numerical methods with Sage 117

3 Concluding remarks

During its initial years of development, the Sage project has grown to an environment which offers
an attractive alternative for the commercial packages in several areas of computational mathematics.
For the purpose of scientific computation teaching, the functionalities of Sage are practically the
same as those of commercial packages. While free availability to instructional purposes is a very
significant advantage, there are also other important factors from the learner’s point of view:

(1) The Python language can be used also for many other purposes not tied with the scientific
computing. A wide selection of extensions and other special libraries are available in the
Internet.

(2) The support of advanced data structures and support of object-oriented data types and mod-
ular program structure is available.

(3) There is an active users’ forum.

It is likely that the Sage environment in education will become more popular on all levels of
mathematics education from junior high school to graduate level teaching at universities. The
support of symbolic computation via Maxima and various numerical packages are noteworthy in
this respect. For purposes of teaching scientific computing, the Sage environment and the modules
it contains form an excellent option.

Acknowledgement. The authors are indebted to the referees for very valuable sets of correc-
tions. This research was supported by the Academy of Finland grant of Matti Vuorinen with the
Project number 2600066611.

References
[ADV] M. S. Andersen, J. Dahl and L. Vandenberghe, CVXOPT: A Python package for convex optimiza-

tion, http://abel.ee.ucla.edu/cvxopt.

[BBSE] R. Bradshaw, S. Behnel, D. S. Seljebotn, G. Ewing, et al., The Cython compiler, http://cython.org.

[BF] R. L. Burden and J. D. Faires, Numerical analysis, Fifth ed. PWS Publ Co, 1993, ISBN 0-534-
93219-3.

[CdB] S. D. Conte and C. de Boor, Elementary numerical analysis: An algorithmic approach. Third ed.
McGraw-Hill Book Co., New York-Toronto, Ont.-London 1965 x+278 pp.

[DGPS] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular – A computer algebra system
for polynomial computations, http://www.singular.uni-kl.de.

[Dra] Dan Drake et al., The SageTeX Package, 2009, ftp://tug.ctan.org/
pub/tex-archive/macros/latex/contrib/sagetex/ sagetexpackage.pdf.

[G] GAP – Groups, Algorithms, and Programming, The GAP Group, http://www.gap-system.org.

[Gro] J. Grout, Numerical Analysis, Speech presented at Sage Education Days 3, The University of Wash-
ington, Seattle, http://wiki.sagemath.org/education3.

118 L. Ruotsalainen, M. Vuorinen

[Hea] M. T. Heath, Scientific computing: An Introductory Survey. Second ed. McGrawHill 2002, ISBN
0-07-112229-X.

[Hen] P. Henrici, Elements of numerical analysis. John Wiley & Sons, Inc., New York-London-Sydney 1964
xv+328 pp.

[His] Sage Reference v5.4: History and License, The Sage Development Team, 2012,
http://www.sagemath.org/doc/reference/history and license.html.

[Hun] J. D. Hunter, Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, Vol.
9, No. 3. (2007), pp. 90-95, doi:10.1109/MCSE.2007.55.

[J] Jmol: an open-source Java viewer for chemical structures in 3D, http://www.jmol.org.

[JOP] E. Jones, T. Oliphant, P. Peterson, et al.: SciPy: Open source scientific tools for Python,
http://www.scipy.org.

[Kiu] J. Kiusalaas Numerical methods in engineering with Python. Third edition. Cambridge University
Press, New York, 2013. ISBN-10: 1107033853 — ISBN-13: 978-1107033856.

[Lan] H. P. Langtangen, A Primer on Scientific Programming With Python, Springer, 2009, ISBN:
3642024742, 9783642024740

[LP] G. Lindfield and J. Penny, Numerical Methods using MATLAB. Prentice Hall, 1999, ISBN 0-13-
012641-1.

[Lut] M. Lutz, Programming Python. 3rd ed. O’Reilly, 2006.

[M] Maxima, a Computer Algebra System, 2012, http://maxima.sourceforge.net.

[MF] J. H. Mathews and K. D. Fink, Numerical methods using MATLAB, Third ed. 1999, Prentice Hall,
Inc., Englewood Cliffs, NJ.

[Mol] C. B. Moler, Numerical computing with MATLAB. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2004. xii+336 pp. ISBN: 0-89871-560-1

[Num] Numerical Computing with Sage, Release 5.4, The Sage Development Team, 2012,
http://www.sagemath.org/pdf/numerical sage.pdf.

[Oli] T. E. Oliphant, Python for Scientific Computing, Computing in Science & Engineering 9, 90 (2007).

[P] PARI/GP, Bordeaux, 2012, http://pari.math.u-bordeaux.fr.

[PFTV] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical recipes. The art of
scientific computing. Third edition. Cambridge University Press, Cambridge, 2007. xxii+1235 pp.
ISBN: 978-0-521-88068-8

[PG] F. Prez and B. E. Granger, IPython: A System for Interactive Scientific Computing, Computing in
Science & Engineering 9, 90 (2007).

[Pub] Publications Citing Sage, The Sage Development Team, http://www.sagemath.org/library-
publications.html.

[R] R: A Language and Environment for Statistical Computing, R Core Team, R Foundation for Sta-
tistical Computing, Vienna, Austria, ISBN: 3-900051-07-0, http://www.R-project.org.

[Ras] A. Rasila Introduction to numerical methods with Python language, part 1, Mathe-
matics Newsletter / Ramanujan Mathematical Society 14: 1 and 2 (2004), 1 -15.
http://www.ramanujanmathsociety.org/

[S] W. A. Stein et al., Sage Mathematics Software (Version 5.4), The Sage Development Team, 2012,
http://www.sagemath.org.

Numerical methods with Sage 119

[Sch] H.-R. Schwarz, Numerical analysis. A comprehensive introduction. With a contribution by J. Wald-
vogel. Translated from the German. John Wiley & Sons, Ltd., Chichester, 1989. xiv+517 pp. ISBN:
0-471-92064-9.

[Str] G. Strang, Introduction to linear algebra, Wellesley-Cambridge Press, 1993.

[T] Teaching with Sage, Sage wiki, The Sage Development Team,
http://wiki.sagemath.org/Teaching with SAGE.

[TLNC] A. Tveito, H. P. Langtangen, B. F. Nielsen and X. Cai, Elements of scientific computing. Texts
in Computational Science and Engineering, 7. Springer-Verlag, Berlin, 2010. xii+459 pp. ISBN:
978-3-642-11298-0

[Tos] S. Tosi, Matplotlib for Python Developers, From technologies to solutions, 2009, Packt Publishing.

[Sto] J. E. Stone, The Tachyon 3D Ray Tracer, Sage Reference v5.4, The Sage Development Team,
http://www.sagemath.org/ doc/reference/sage/
plot/plot3d/tachyon.html.

[Wor] Sage Workshops, Sage wiki, The Sage Development Team, http://wiki.sagemath.org/Workshops.

